
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   112 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

Levenshtein Distance based Information 
Retrieval 

Veena G, Jalaja G 
BNM Institute of Technology, 

Visvesvaraya Technological University 
 

Abstract— In today’s web based applications information retrieval is gaining popularity. There are many advances in information retrieval 
such as fuzzy search and proximity ranking. Fuzzy search retrieves relevant results containing words which are similar to query keywords. 
Even if there are few typographical errors in query keywords the system will retrieve relevant results. A query keyword can have many 
similar words, the words which are very similar to query keywords will be considered in fuzzy search. Ranking plays an important role in 
web search; user expects to see relevant documents in first few results. Proximity ranking is arranging search results based on the 
distance between query keywords. In current research information retrieval system is built to search contents of text files which have the 
feature of fuzzy search and proximity ranking. Indexing the contents of html or pdf files are performed for fast retrieval of search results. 
Combination of indexes like inverted index and trie index is used. Fuzzy search is implemented using  Levenshtein’s Distance or edit 
distance concept. Proximity ranking is done using binning concept. Search engine system evaluation is done using average interpolated 
precision at eleven recall points i.e. at 0, 0.1, 0.2…..0.9, 1.0. Precision Recall graph is plotted to evaluate the system. 
 
Index Terms— stemming, stop words, fuzzy search, proximity ranking, dictionary, inverted index, trie index and binning.   

——————————      —————————— 

1 INTRODUCTION                                                                     
nformation retrieval (IR) is the method of obtain-
ing necessary information from a collection of large data set. 
User usually searches by providing the keyword or query. 

Queries can be a single or multiple keywords. In information 
retrieval, search for a query will not show single result instead 
many results which match the query will be shown. In Infor-
mation Retrieval ranking the result set is very much important 
as the user will be interested in getting required information 
from first few documents of result set.  

While entering characters there may be some typographical 
errors (typos), fuzzy search finds similar keywords and dis-
plays results for the predicted keywords. If the user wants to 
search for a documents containing keyword Vanaja but by 
mistake he or she types Wanaja then because of fuzzy search 
[1] the system will be able to retrieve the document containing 
Vanaja. Similarly if user wants to search for documents con-
taining keyword Gouri but by mistake he or she types Gowri 
the system will be able to display proper document containing 
Gouri. Since words Vanaja and Wanaja are similar, similarly 
words Gouri and Gowri are similar. 

In case a query contains more than one term, then consider-
ing proximity [1] (the distance between keywords) is very im-
portant. To illustrate the importance of proximity let us con-
sider the query “knowledge management”. Systems that do 
not take proximity into account return general documents in 
which all the two terms knowledge and management are indi-
vidually important, but the document does not necessarily 
contain information about knowledge management. On the 
other extreme an exact phrase match would make sure that the 
document retrieved matches the query but implementing such 
phrase matching search would result in not displaying many 
relevant results. A proximity ranking, ranks query results 
based on distance between query keywords.  

Pre-processing is an important step for fast retrieval of 
search results. Pre-processing involves text extraction from 

data set files, stop word removal, stemming, unique words 
extraction and Index creation. Indexes are very important in 
any search engine. Combination of indexes like Trie Index[2] 
and Inverted List index[3] is used in current research. Trie 
Index is a special kind of tree; unique words are inserted into 
Trie Index which helps in fuzzy search. Inverted Index con-
tains a word ID and list of Document ID i.e. all those docu-
ments which contains the word. Along with document ID list 
of position ID will be stored, i.e. where and all the word is 
present in the document. Storing position ID is necessary for 
ranking search results based on proximity ranking. 

Fuzzy search is based on finding similar words from the 
dictionary. Levenshtein distance or edit distance in combina-
tion with Trie index finds similar words faster. Edit distance 
here refers to number of single character operations such as 
insertion, replacement or deletion need to be done in order to 
transform one word to another word. For example edit dis-
tance between “bin” and “pin” is one, since replacing charac-
ter ‘b’ by ‘p’ word “bin” can be converted to “pin”. Based on 
the length of the word a threshold for edit distance is deter-
mined all similar words within the threshold distance will be 
considered for fuzzy search. 

Proximity ranking is implemented based on binning con-
cept. Inverted index contains document ID which is associated 
with list of bin ID. The document is divided into bins, the 
number of bins varies from document to document but each 
bin contains equal number of words. For proximity ranking 
Inverted index is searched to find if two or more query words 
are within the same bin or in adjacent bin. If the query words 
are in same bin or adjacent bin the document is ranked higher 
otherwise the document is ranked lower. 

In next section, problem statement is described. In section 3 
previous works on fuzzy search, indexing and term proximity 
are reviewed. Section 4 describes the proposed method that 
builds fuzzy search and proximity ranking. Experimental re-

I IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   113 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

sults are shown in Section 5. Section 6 concludes and discusses 
future work. 

2 PROBLEM STATEMENT 
Implementation of search system with advanced search 

features such as fuzzy search with proximity ranking. Existing 
search systems provide different kinds of ranking such as 
page ranking, ranking based on number of citations of the 
documents and ranking based on term frequency and inverse 
document frequency (tf-idf). Proximity ranking is very im-
portant since it determine the relevance of the answers as 
search queries usually contain related keywords and user is 
mostly looking for documents which have query keywords 
together. 

3 RELATED WORK 
3.1 Fuzzy Search 

K-Grams[4] are a sequence of k characters. Consider a 
word “course”, if $ character is used to denote the beginning 
and end of the word, all 3 - gram character set of $course$ are 
{$co, cou, our, urs, rse, se$}. A k – gram index contains all k – 
grams for all words in the dictionary. For each k – gram (ki) all 
words which contains ki as their substring is identified and a 
posting list will be done. 

 
 

 
 

Fig. 1. Posting List for the 3 – gram Col 

Fig. 1.shows the posting list for the 3 – gram Col. K – Gram 
algorithm does not find all possible spelling errors. For exam-
ple consider the word SODMY which must be corrected to 
SOUMY, the trigrams for SODMY are SOD, ODM, DMY all 
the three trigrams contains the error D thus the word SOUMY 
will not be found using K – gram algorithm because it does 
not contain any of the trigrams. Levenshtein distance[5] or edit 
distance is the number of single character operations required 
to transform one string to another. Damerau- Levenshtein dis-
tance[6] is the same as Levenshtein distance with minor modi-
fication, the single character operations allowed in case of Le-
venshtein distance is insertion, deletion and substitution 
whereas in case of Damerau- Levenshtein distance along with 
above mentioned operations transpositions of adjacent charac-
ters are allowed.  
 
3.2 Indexing 

For efficient and faster retrieval of search results indexing 
plays an important role. Inverted Index is most commonly 
used index; in this index each word is mapped to a list of doc-
uments where the word is present. Trie Index is a form of tree 
data structure, every node except leaf node consists of many 
branches each branch represents a particular character of the 
word. Forward Index is a type of index in which a document 
is mapped to list of words present in the document. As men-
tioned in [7] Hyb indexing outperforms inverted indexing by 

a factor of 15 – 20 in worst case. Hyb indexing is a variation of 
inverted lists in which data in compressed. 

 
3.3 Proximity Ranking 
BM25[8] is a model of information retrieval which computes 
the score for document based on query terms by considering 
term frequency and inverse document frequency without con-
sidering proximity between query keywords. In [9] proposed 
a method to change the document score based on proximity of 
query terms. In [10] proposed a method for proximity through 
spans. Depending on query terms spans are identified dynam-
ically, the span need not be of fixed length and spans need not 
contain every query term. In [1] the common phrases in the 
document are identified and they are stored as part of Trie 
data structure query is segmented into various segments using 
phrase information and documents are ranked based on 
phrase matching, one of the limitations with this approach is 
that the phrases need to be identified in advance as part of 
preprocessing step. 

4 PROPOSED METHOD 
4.1 Proposed system Architecture 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. System Architecture 

Fig. 2. shows the proposed system architecture, pre-processing 
module is meant for creating and retrieval of indexes. Search-
ing and ranking module is responsible for searching suitable 
documents using query keywords and indexes, this module 
ranks documents based on proximity distance between query 
keywords.  User uses the system to search relevant docu-
ments. File system stores data set as well as index files. Data-
base holds abstract information of each file.  
 
Preprocessing 
Text data from each of data set file is read special characters 
are ignored, stop words [11] are ignored, duplicate words are 
ignored and stemming [12] is performed. Words are arranged 
alphabetically. Each unique word is given a word Id. The col-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   114 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

lection of word Id and word name corresponds to Dictionary. 
Dictionary will be stored in file system during this phase. It 
will be retrieved to main memory during the start of search 
server. Dictionary will also be represented as Trie data struc-
ture since using Trie data structure helps in faster retrieval of 
similar words for fuzzy search. Trie data structure will be 
stored in file system during this phase. It will be retrieved to 
main memory during the start of search server. During this 
phase an inverted list is created by reading in each file of data 
set word by word if the word in the dictionary exists then in 
which bin the word falls will be noted. The bin position helps 
in proximity ranking. The inverted index is created as a map-
ping between word Id and list of document Id’s i.e. the docu-
ments in which the word exists and list of bin Id’s i.e. the bin 
position at which the word is present in the document. 

 
 
 
 

 
Fig. 3. Inverted Index 

Fig. 3. shows inverted index format. Preprocessing module 
creates inverted index and stores it in a file on file system. It 
will be retrieved to main memory during the start of search 
server.  

 
Searching and Ranking. 
User can enter one query keyword or more than one query  
keyword for searching. When user enters more than one query 
keyword proximity ranking will be enabled. Fuzzy search is 
based on Levenshtein distance or edit distance.    

 
 
 
 
 
 
 
 
 

 
Fig. 4. Equations for Levenshtein distance 

 
Fig. 4.  Shows equations for Levenshtein distance, equation (1) 
and (2) represent base case equations for recursive function. In 
equation (3) the first term represent insertion cost of a charac-
ter, 2nd term represent deletion cost of a character and third 
term represent replacement cost if two characters being com-
pared are different. 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
                   
 
 

Fig. 5. Example for Levenshtein distance calculation 

Fig. 5.  Shows the application of Levenshtein distance equa-
tion, the edit distance between “BIN” and “PIN” is calculated 
as 1 i.e. if single character is replaced one word can be con-
verted to another word. By replacing ‘P’ by ‘B’ word “PIN” 
can be converted to “BIN”. Words are considered as similar if 
the edit or Levenshtein distance is less than threshold value. 
The threshold value can be determined by using the word 
length. Since Trie index is used for finding the edit distance if 
prefix (p) of a word exceeds the threshold value for edit dis-
tance then all words which contains p as prefix will be 
skipped from checking the edit distance which in turn help in 
determining similar words faster.                          
Algorithm Name: findSimilarWords 
Input: 
word, // Query word  
node, // Trie node initially it will point to root of Trie 
tr // threshold distance of word 
Output: 
list of similar words 
Steps: 
// declarations 
 editDist[ ], orgDist[ ]  is an array of length (word.length +1) 
 Initially orgDist has values 0,1,2,... 
1   For each childNode of node 
2      editDist [0] = orgDist[0] +1 
3         for j =1 to word.length  
4            editDist [j] = Apply Levenshtein distance equation 
5         childNode.orgDist  = editDist 
6         if(   childNode. orgDist[word.length] > tr ) 
7            break 
8         findSimilarWords(word, childNode, tr)     
9    if(node.orgDist[word.length] <= tr) 
10     add the wordId from Trie to similar word list. 
 

 
Above algorithm findSimilarWords, is used to find list of simi-
lar words for a given query word with threshold distance “tr”. 
During preprocessing step all unique words in data set are 
represented using Trie data structure. “node” represent root 
node of a Trie. Child nodes of a Trie are traversed, while trav-
ersing if the edit distance of a node which represent the prefix 
of certain word in dictionary exceeds threshold distance then 
the remaining child nodes are skipped from checking for simi-
lar words. If the edit distance is within threshold distance then 
the word will be added to result list of similar words. 
 
Algorithm Name: proximityRanking 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   115 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

Input:  
wordIdList, // List of similar word Id lists 
docIdList //List of documents containing similar                                           
words as that of query keywords 
Output: 
Ranked list 
Steps: 
1   For each list in wordIdList  
2      for each docId in docIdList 
3         obtain binId from inverted list  
4   if( words are in same bin or words are in adjacent bin)  
5      add the docId to the top of rankedList. 
6   else   
7      add the docId to the end of rankedList. 
 

 
Above algorithm proximityRanking, is used to rank docu-
ments based on distance between query keywords. The entire 
set of documents which have all query keywords or words 
similar to query keywords are considered for ranking. Bin Id 
list is obtained from inverted list. If all words are in same bin 
or adjacent bin then the document is ranked higher else the 
document is ranked lower.  
Algorithm Name: search 
Input:  
queryWordList, // List of query keywords 
Output: 
Search Result 
Steps: 
1   remove stop words from query word list 
2   apply stemming to each query keyword 
3   for each keyword in queryWordList 
3        find threshold edit distance  
4    similarWordList = findSimilarWords(keyword, node, 
threshold) 
5  documents with phrases = proximityRanking (similar-
WordList,            wordIdList) . 
6   for each keyword 
7        find documents without phrases  
8   Result = (documents with phrases)   union (documents 
without phrases) 
 
Above algorithm search, is used to search relevant documents. 
Initially preprocessing of query keywords is done, this in-
volves removal of stop words from the keyword list. For each 
query keyword stemming is performed. To find list of similar 
words to each query keyword threshold distance is calculated 
based on length of query keyword. Similar words are found 
using Levenshtein distance. Inverted lists are intersected to 
determine documents which contain all query keywords. 
Proximity ranking is applied to find documents with phrases. 
Documents without phrases i.e. Documents containing few 
query keywords but they do not form a phrase will be identi-
fied. The result will be displayed as union of documents with 
phrases and documents without phrases. 

5 EXPERIMENTAL RESULTS 

Evaluation of search system is done using recall and average 
interpolated precision. Cran dataset is used for evaluating 
system which contains 1400 documents, 225 queries and set of 
relevant document number for each query. Lucene is an open 
source search system which is being compared with the 
current search system being developed (IFSWPR). Initially 
queries are given as input to each lucene and IFSWPR 
systems. Precision and Recall for each of the queries is 
calculated for each system. Interpolated precision for each 
query is calculated using the following formula. 
 

Pint (r) = max (P (r’)) where r’ >= r 
 

Interpolated precision at recall point (r) is maximum precision 
of all those points for which recall value (r’) is greater than or 
equal to (r). Interpolated precision is determined at eleven 
golden points i.e. at 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1.0. Average interpolated precision is calculated by consider-
ing interpolated precision of each of 225 queries. Average in-
terpolated precision versus recall graph is plotted for both 
systems. 

  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
Fig. 6. Graph representing Average interpolated precision versus recall of 

IFSWPR and Lucene systems. 

Fig. 6. shows graph of average interpolated precision versus 
recall of IFSWPR and lucene systems. Since IFSWPR system 
used modified inverted list by storing position of a word in a 
document using bin Id this system will retrieve more number 
of relevant documents within first few results when compared 
to lucene system. Other than cran data set English Wikipedia 
data set is used for testing fuzzy search and proximity rank-
ing.  

6 CONCLUSION 
IFSWPR system is developed to provide advanced search fea-
tures like fuzzy search and proximity ranking. Fuzzy search 
helps user in retrieving relevant results even if there are few 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   116 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

typographical errors in the query keywords. Proximity rank-
ing ranks records based on distance between query keywords. 
Levenshtein distance is used in fuzzy search. Proximity rank-
ing makes use of modified inverted list by storing word posi-
tions in the form of bin Id. There are other advanced search 
features like auto completion, page ranking etc. which will be 
considered in future for implementation.    

 
 

7 REFERENCES 
[1] Inci Cetindil, J. Esmaelnezhad, T. Kim and Chen Li “Efficient Instant-Fuzzy 

Search with Proximity Ranking,,” IEEE 30th International conference on data 
engineering year 2014. 

[2] G. Li, J. Wang, C. Li, and J. Feng, “Supporting efficient top-k queries in type-
ahead search,” in SIGIR, 2012, pp. 355–364 

[3] M. Persin, J. Zobel, and R. Sacks-Davis, “Filtered document retrieval with 
frequency-sorted indexes,” JASIS, vol. 47, no. 10, pp. 749–764, 1996 

[4] A. Singhal. “Modern information retrieval: A brief overview.” Bulletin of the 
IEEE Computer Society Technical Committee on Data Engineering, 

[5] S. Chaudhuri and R. Kaushik, “Extending autocompletion to tolerate errors,” 
in SIGMOD Conference, 2009, pp. 707–718. 

[6] Damerau-Levenshtein edit distance explained 
http://scarcitycomputing.blogspot.in/2013/04/damerau-levenshtein-edit-
distance.html 

[7] H. Bast and I. Weber, “The completesearch engine: Interactive, efficient, and 
towards ir & db integration,” in CIDR, 2007, pp. 88–95. 

[8] H. Zaragoza, N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson,  “Mi-
crosoft cambridge at trec 13: Web and hard tracks,” in TREC, 2004.. 

[9] Y. Rasolofo and J. Savoy. “Term proximity scoring for keyword-based 
retrieval systems.” In ECIR, page 207, 2003. 

[10]  Krysta M. Svore,Pallika H. Kanani, Nazan Khan  “How Good is a 
Span of Terms? Exploiting Proximity to Improve Web Retrieval” 
SIGIR’10, 2010,  pp. 154-161. 

[11] Stopword Lists “http://www.ranks.nl/stopwords” 
[12] The Porter Stemming Algorithm 

“http://tartarus.org/martin/PorterStemmer/” 
 
 

 

 
 
 

IJSER

http://www.ijser.org/

	1 Introduction
	2 Problem statement
	3 Related Work
	3.1 Fuzzy Search
	3.2 Indexing
	3.3 Proximity Ranking

	4 Proposed Method
	4.1 Proposed system Architecture
	Preprocessing
	Searching and Ranking.

	5 Experimental Results
	Evaluation of search system is done using recall and average interpolated precision. Cran dataset is used for evaluating system which contains 1400 documents, 225 queries and set of relevant document number for each query. Lucene is an open source sea...

	6 Conclusion
	7 References



